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Canonically modified Nosé-Hoover equation with explicit inclusion of the virial
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The Nosé-Hoover equation has recently been introduced to simulate, in a deterministic and reversible

way, the equilibrium properties of a system at constant temperature.

However, for many one-

dimensional potentials, such as the harmonic oscillator, the Nosé-Hoover scheme is not adequate since
the dynamics is not sufficiently ergodic. We present modifications of the Nosé-Hoover equation in which
the kinetic energy and the virial are treated in an equivalent manner and which explicitly include the
virial within a canonical framework. We show that these modifications can yield an adequate statistical
description for one-dimensional potentials such as the double-well and harmonic oscillator.

PACS number(s): 05.20.—y, 64.10.+h, 05.45.+b

Recently, Nosé [1] introduced a purely deterministic
and reversible set of equations which model the coupling
of a physical system to a heat bath through the action of
a virtual coordinate and its conjugate momentum. In this
scheme, thermalization can be achieved if the dynamics
in the extended phase space is ergodic, so that time aver-
ages in the extended system are equivalent to constant-
temperature averages in the physical system. A particu-
larly useful form of the Nosé equation was derived by
Hoover [2] and it has been shown that the Nosé-Hoover
equation adequately thermalizes multidimensional sys-
tems. However, it is known [3] that this is not the case
for many one-dimensional potentials, such as the har-
monic oscillator. This inadequacy has motivated several
modifications of the original Nosé-Hoover scheme [4-7].
The successful modifications of Kusnezov, Bulgac, and
Baver [4], Winkler [5], and Martyna and Klein [6]
thermalize explicitly the kinetic energy of the physical
system, so that the equipartition theorem is enforced if
the extended phase-space dynamics is ergodic. On the
other hand, the virial theorem is another general state-
ment regarding the equilibrium properties of a physical
system. It requires the average kinetic energy of the sys-
tem to be equal to the average virial of the system (which
is defined below). The above modifications satisfy the
virial theorem as does the Nosé-Hoover scheme, but the
virial is not thermalized explicitly. Hamilton [7] con-
sidered a modification of the Nosé-Hoover equation
which thermalizes explicitly both the kinetic energy and
the virial of the physical system. However, this scheme
was not set up in a canonical framework. In this paper
we consider further generalizations of the Nosé-Hoover
equation which treat the kinetic energy and the virial in
an equivalent manner within the canonical framework of
Jellinek and Berry [8].

In the following, we consider the motion of a point
mass under the action of an external one-dimensional po-
tential subjected to a deterministic thermal bath of the
Nosé-Hoover form at temperature 7. We denote the
physical variables—position, momentum, and time—by
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q’, p’, and t’, respectively. Following the framework of
Ref. [8], we let p, g, and ¢ denote the corresponding virtu-
al variables. These are related to the physical variables
by q¢'=qf(s), p’=p /h(s), and dt' =dt /w(s), where h (s),
f(s), and w(s) are scaling functions of s, the coordinate
associated with the thermal bath. If p; is the momentum
conjugate to s, then {g,p,p,,s} forms a set of canonical
variables. The scaling functions used by Nosé were
h(s)=s, f(s)=1, and w(s)=s. One can write the Hamil-
tonian of the system [1,8] in the following manner:

o’

2
H=L_1vifg)+

+glns . (1)
2h? 20, g

Here, V(fq) is the external potential, Q, is a mass pa-
rameter associated with the bath degree of freedom, and
g is a number determined by the scaling functions.
Without loss of generality, dimensionless units have been
used and kzT has been set equal to 1. Two one-
dimensional potentials are considered: the harmonic os-
cillator ¥ =g'?/2 and the double-well potential
V=(q""—1)?/2.

We consider general scaling functions of the form
h=s" f=sM and w=s%X. In this case, the canonical
equations of motion expressed in terms of the physical
variables take the form

q":SM‘FKﬁNp"'_*‘l‘“MSKAIq’pS , (2)
o,
pr:_VlsM+K*N_LNSK—1prpS , (3)
9,
s=s%./0, , @
ps:NSK—IPIZ_Mq:VISK—l_gsK—l , (5)

where a dot denotes a derivative with respect to ¢t and V'
is the derivative of the potential with respect to the physi-
cal coordinate g'. Note that the factor ¢'V’, which is
proportional to the virial of the system, appears explicitly
in Eq. (5). However, the virial is not thermalized in-
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dependently from the kinetic energy. If the system is er-
godic, a microcanonical average in the extended phase
space is equivalent to a canonical average in the physical
phase space for g =N —M —K +1. The choice K =1
and M =N —1 leads to a complete decoupling of the
variable s, thus obtaining a generalized Nosé-Hoover
equation in which the virial appears explicitly:

4’:p’+L(N—1)q’ps , (6)
g,
L J— ’ 1 ’
p'=—V'——Np'p;, )
91
p=Np?—(N—1)g'V'—1. (8)
For N =1, the original Nosé-Hoover equation is

recovered. For the double-well potential, a numerical in-
tegration of Egs. (6)—(8) (with N =1) indicates that the
motion is chaotic for a range of parameter values. How-
ever, this does not necessarily mean that the canonical
distribution is obtained in the physical phase space. In
order to examine this, we numerically integrate Egs.
(6)—-(8) (with N =1) for the double-well potential for a
typical chaotic trajectory. In Fig. 1 normalized histo-
gramic distributions of g¢’, p’, the virial

T,=q'V'/2=¢"%(g"—1),

and the kinetic energy E, =p'?/2 are presented for a tra-
jectory of duration 10000 units. The exact thermal dis-
tributions are also presented. These are given by

P(g')=Z lexp[—V(g")], 9)
ry — 1 — )

P(p’) ‘/ﬂexp( p'°/2), (10)

P(T,) =3 P(g") | 24" an
v ° dTv b

P(E, )= —1—exp(—E}) , (12)

‘/77'Ek
where Z =ffwexp[—V(q’)]dq’ and the summation in
Eq. (11) is over the i branches of ¢’(T, ) bounded by

dq”
dT,

=0 .

It is seen that, in accord with the results of Ref. [4], the
agreement is poor. The histogramic g’ distribution shows
an enhancement of the |g’| =1 peaks which are reflected
by excessive values of the T, distribution near the 7, =0
divergence. Also, the g’ distribution exhibits secondary
extrema for smaller values of |¢’|. Finally, the p’ and E,,
distributions show a significant enhancement of the
p'=E; =0 maximum.

We wish to treat the kinetic energy and the virial in an
equivalent manner and, consequently, the coefficient of
these terms in Eq. (8) should be the same, leading us to
the choice N =1. In Fig. 2 similar histogramic distribu-
tions are presented for a typical chaotic trajectory. It
may be seen that the agreement between the numerical
and the exact thermal distributions is good in contrast to
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FIG. 1. Normalized distributions P of (a) ¢, (b) p’, (c) T,, and
(d) E; for the double-well potential using the Nosé-Hoover
equation. The initial conditions are ¢’(0)=0.25, p’'(0)=0,
ps(0)=0, and the mass of the bath degree of freedom is
Q,=1.0. The trajectory run is 10000 time units and the sam-
pling time is 0.1. The bin size is 0.01 for (a) and (b) and 0.0025
for (c) and (d). The continuous curves gives the exact thermal
distributions of Egs. (9)—(12).
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FIG. 3. Same as Fig. 1, but using Egs. (14)-(19) for the har-
0 e

monic oscillator. The initial conditions are g¢’'(0)=p,(0)

E 1 1.5 =p,(0)=0, p’(0)=s(0)=u(0)=1.0, and the masses of the bath

degrees of freedom are Q,=Q,=1.0. The standard deviations

FIG. 2. Same as Fig. 1, but using Egs. (6)—(8) with N=1. of the q’, p’, T,, E, distributions with the exact values (in

The initial conditions are ¢'(0)=1, p'(0)=0, p,(0)=0, and the parentheses) are, respectively; 0.9995 (1.0), 1.0007 (1.0), 0.7055
mass of the bath degree of freedom is @, =1.0. (0.7071), and 0.7042 (0.7071).
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the Nosé-Hoover system. We believe that Eqgs. (6)—(8)
will provide canonical distributions for other anharmonic
potentials and for multidimensional systems. Unfor-
tunately, for the harmonic potential, it may be shown
that Egs. (6)—(8) are integrable. Other variants of the
general equations (2)—(5) for which the coefficients of the
virial and of the kinetic energy are again identical (i.e.,
M = —N) could be considered. However, for the har-
monic oscillator, it is again possible to show that the
motion is integrable.

A further modification of the Nosé-Hoover equation
may be obtained by explicitly thermalizing the virial in-
dependently from the kinetic energy, as in Ref. [7]. In or-
der to do so, we introduce a second thermal bath coordi-
nate u and its conjugate momentum p,. We extend the
Hamiltonian of Eq. (1) in the following manner:

H= P v+ Dt P st (1)

2h? 20, 20, ’
where we have introduced a mass parameter Q, associat-
ed with the second bath degree of freedom and j is an ar-
bitrary parameter. In Eq. (13) we extend the scaling
functions to & =s%u?®, f=s? and w =s*u’. If the sys-
tem is ergodic, a microcanonical average in the extended
phase space is equivalent to a canonical average in the
physical phase space for g=a—c—k+1 and for
b —1—d > —1. This last condition guarantees the con-
vergence of the u contribution to the partition function.
The special case a =k =1, b =d =1 and | =0 constitutes
the well-known constant-temperature-—constant-pressure
method [1] for which j corresponds to the externally set
pressure and u is the volume.

In the following, we take j equal to unity and we con-
sider the scaling a =1, b =¢=0,d =—1, and k =]=1.
The resulting system of six canonical equations of motion
then simplifies and takes a symmetrical form. Expressed
in terms of the physical variables, they are

I p— ’ 1 ’

4'=p' = s4Pu > 14

LA — ’ 1 ’

p'=—V'——up'p, , (15)
1

Ss=sup,/Q, , (16)

u=sup,/Q, , (17)

ps=u(p?—1), (18)

D,=s(q@g'V'—u) . (19)

With the Hamiltonian of Eq. (13), the u contribution to
the probability density is proportional to exp(—u), so
that the canonical average {u ) =1. It is then easily seen
from Eqgs. (18) and (19) that the kinetic energy and the
virial are independently thermalized by the dynamics of
the bath variables [9]. This set of equations implements
in a canonical way the objective of Ref. [7].

In Fig. 3 we compare the normalized histogramic dis-
tributions of q’, p’, T,, and E; for the harmonic oscilla-
tor with the exact thermal distributions for a typical
chaotic trajectory of duration 10000 units. It is seen
that there is very good agreement between the numerical
and exact thermal distributions. Moreover, the distribu-
tions of both ¢’, p’ and T, E, are in agreement with each
other, as they should be. In contrast, for the Nosé-
Hoover equation, the thermal distribution is not obtained
for the harmonic oscillator, even for a chaotic trajectory,
as shown in Ref. [4].

In conclusion, we have generalized the Nosé-Hoover
equation to a set of equations which are canonical in the
extended phase space and which treat the kinetic energy
and the virial on an equivalent basis. In Egs. (14)-(19),
these quantities are thermalized independently by the ac-
tion of two bath variables. We have shown that these
equations can adequately thermalize the one-dimensional
harmonic oscillator, in contrast to the original Nosé-
Hoover scheme. In Egs. (2)-(5) (with M = —N) and Egs.
(6)—(8) (with N =1), it is rather the sum of the kinetic en-
ergy and the virial which is explicitly thermalized. As
there is only one bath variable, these sets of equations are
smaller and although they are integrable for the harmon-
ic oscillator, they can adequately thermalize the one-
dimensional double-well potential, in contrast to the orig-
inal Nosé-Hoover scheme. We believe that the smaller
sets [Egs. (2)—(8)] may prove useful for other anharmonic
one-dimensional potentials and for multidimensional sys-
tems.
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